이번 포스팅은 numpy의 boolean index, fancy index에 대해 정리글 입니다. 아래 참고 사이트 목록의 유튜브 영상을 참조하여 남깁니다. 1. boolean index numpy는 배열은 특정 조건에 따른 값을 배열 형태로 추출 할 수 있습니다. 비교 연산 함수 들도 모두 사용이 가능합니다. import numpy as np; test_array = np.array([1,4,0,2,3,8,9,7], float) # 조건에 맞으면 ture, 틀리면 false의 배열을 출력 test_array > 3 # 조건이 true인 index의 element만 추출 test_array[test_array>3] # 조건에 맞는것만 추출한다. condition = test_array 25 B # 0,1..
오늘은 머신러닝을 배우는데 있어서 필요한 numpy에 대해 정리해보겠습니다. 1. Numpy란? numpy는 Numerical Python의 약자입니다.파이썬의 고성능 과학 계산용 패키지로 Matrix와 Vector와 같은 Array 연산을 할때 사용하며 표준 라이브러리 처럼 사용하고 있습니다. 한글로는 넘파이로 주로 통칭하며, 넘피/늄파이라고도 부르기도 합니다. 2. Numpy 특징 numpy의 특징은 다음과 같습니다. 일반 List에 비해 빠르고, 메모리를 효율적으로 사용한다.반복문 없이 데이터 배열에 대한 처리를 지원하여 빠르고 편리하다.선형대수와 관련된 다양한 기능을 제공한다.C, C++, 포트란 등의 언어와 통합이 가능하다.3. Numpy 레퍼런스numpy를 학습할때 참고하면 좋은 사이트 목록입..
- Total
- Today
- Yesterday
- 머신러닝
- Java leetcode
- numpy
- k8s metrics-server
- react
- 노드
- 지도학습
- 버츄얼스튜디오코드
- Component
- React 프로젝트 생성
- Python
- LeetCode 알고리즘 공부
- 30 Day LeetCode Challenge
- Java
- Node
- LeetCode 5월 챌린지
- 퍼셉트론
- CHATGOT
- GPTGOT
- GPT서비스
- 에라토스테네스
- 파이썬 numpy
- vscode
- 리엑트
- git
- 파이썬
- k8s metrics-server running
- 넘파이
- LeetCode 풀이
- LeetCode 30일 챌린지
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |